凸包(Convex Hull)是一个计算几何(图形学)中的概念。在一个实数向量空间V中,对于给定集合X,所有包含X的凸集的交集S被称为X的凸包。X的凸包可以用X内所有点(X1,...Xn)的线性组合来构造。在二维欧几里得空间中,凸包可想象为一条刚好包著所有点的橡皮圈。用不严谨的话来讲,给定二维平面上的点集,凸包就是将最散逸层的点连接起来构成的凸多边型,它能包含点集中所有的点。
定义
⒈对于一个集合D,D中任意有限个点的线性组合的全体称为D的凸包。
⒉对于一个集合D,所有包含D的凸集之交称为D的凸包。
可以证明,上述两种定义是等价的概念
1 点集Q的凸包(convex hull)是指一个最小凸多边形,满足Q中的点或者在多边形边上或者在其内。右图中由红色线段表示的多边形就是点集Q={p0,p1,...p12}的凸包。
2 一组平面上的点,求一个包含所有点的最小的凸多边形,这就是凸包问题了。这可以形象地想成这样:在地上放置一些不可移动的木桩,用一根绳子把他们尽量紧地圈起来,并且为凸边形,这就是凸包了。
平面凸包求法
常见求法
2.0 Graham's Scan法求解凸包问题 概念
凸包(Convex Hull)是一个计算几何(图形学)中的概念。用不严谨的话来讲,给定二维平面上的点集,凸包就是将最散逸层的点连接起来构成的凸多边型,它能包含点集中所有点的。严谨的定义和相关概念参见维基百科:凸包。
这个算法是由数学大师罗纳德·葛立恒(Graham)发明的,他曾经是美国数学学会(美国数学学会)主席、AT&T首席科学家以及国际杂技师协会(IJA)主席。(太汗了,这位大牛还会玩杂技~)
问题
给定平面上的二维点集,求解其凸包。
过程
⒈ 在所有点中选取y坐标最小的一点H,当作基点。如果存在多个点的y坐标都为最小值,则选取x坐标最小的一点。坐标相同的点应排除。然后按照其它各点p和基点构成的向量;与x轴的夹角进行排序,夹角由大至小进行顺时针扫描,反之则进行逆时针扫描。实现中无需求得夹角,只需根据向量的点积公式求出向量的模即可。以下图为例,基点为H,根据夹角由小至大排序后依次为H,K,C,D,L,F,G,E,I,B,A,J。下面进行逆时针扫描。
⒉ 线段;一定在凸包上,接着加入C。假设线段;也在凸包上,因为就H,K,C三点而言,它们的凸包就是由此三点所组成。但是接下来加入D时会发现,线段;才会在凸包上,所以将线段;排除,C点不可能是凸包。
⒊ 即当加入一点时,必须考虑到前面的线段是否会出现在凸包上。从基点开始,凸包上每条相临的线段的旋转方向应该一致,并与扫描的方向相反。如果发现新加的点使得新线段与上线段的旋转方向发生变化,则可判定上一点必然不在凸包上。实现时可用向量叉积进行判断,设新加入的点为pn + 1,上一点为pn,再上一点为pn - 1。顺时针扫描时,如果向量;与;的叉积为正(逆时针扫描判断是否为负),则将上一点删除。删除过程需要回溯,将之前所有叉积符号相反的点都删除,然后将新点加入凸包。
在上图中,加入K点时,由于线段;相对于;为顺时针旋转,所以C点不在凸包上,应该删除,保留K点。接着加入D点,由于线段;相对;为逆时针旋转,故D点保留。按照上述步骤进行扫描,直到点集中所有的点都遍例完成,即得到凸包。
复杂度
这个算法可以直接在原数据上进行运算,因此空间复杂度为O⑴。但如果将凸包的结果存储到另一数组中,则可能在代码级别进行优化。由于在扫描凸包前要进行排序,因此时间复杂度至少为快速排序的O(nlgn)。后面的扫描过程复杂度为O(n),因此整个算法的复杂度为O(nlgn)。
⒉1 凸包最常用的凸包算法是Graham扫描法和Jarvis步进法。
对于一个有三个或以上点的点集Q,过程如下:
计算点集最右边的点为凸包的顶点的起点,如上图的P3点。
Do
For i = 0 To 总顶点数
计算有向向量P3->Pi
If 其余顶点全部在有向向量P3->Pi的左侧或右侧,则Pi点为凸包的下一顶点
Pi点加入凸包列表
goto 1
End If
Exit Do
1:
此过程执行后,点按极角自动顺时针或逆时针排序,只需要按任意两点的次序就可以了。而左侧或右侧的判断可以用前述的矢量点积性质实现。
特殊算法
⒉2 求凸包有很多方法,不过最适合OIer和ACMer的估计还是Graham's Scan这个方法了。它的大致方法是这样的:首先,找到所有点中最左边的(y坐标最小的),如果y坐标相同,找x坐标最小的;以这个点为基准求所有点的极角(atan2(y-y0,x-x0)),并按照极角对这些点排序,前述基准点在最前面,设这些点为P..P[n-1];建立一个栈,初始时P、P、P进栈,对于P[3..n-1]的每个点,若栈顶的两个点与它不构成“向左转”的关系,则将栈顶的点出栈,直至没有点需要出栈以后将当前点进栈;所有点处理完之后栈中保存的点就是凸包了。
如何判断A、B、C构成的关系不是向左转呢?如果b-a与c-a的向量积小于0就不是。a与b的叉乘就是日本电视台*b.y-a.y*b.x。
上面的这个Graham的实现比我原来按照USACO里的课文写得简单多了,主要是它通过简单的预处理保证了P、P以及P[n-1]肯定是凸包里的点,这样就可以避免在凸包“绕回来”的时候繁杂的处理。
中心法
先构造一个中心点,然后将它与各点连接起来,按斜率递增的方法,求出凸包上部;再按斜率递减的方法,求出凸包下部。
水平法
从最左边的点开始,按斜率递增的方法,求出凸包上部;再按斜率递减的方法,求出凸包下部。水平法较中心法减少了斜率无限大的可能,减少了代码的复杂度。
代码例
代码一
(在编辑器中将"_ "(下划线+空格)替换成两个空格即可编译;注意要去掉开通的双字节中文空格,蛋疼的百科。)
#特库摩lude
#include
using namespace std;
struct 小数点
{
_ _ int x;
_ _ int y;
} p[30005],res[30005];//p标记图中所有的点,res标记凸包上的点
int cmp(point p1,point p2)
{
_ _ 回车键 p1.y < p2.y || (p1.y == p2.y && p1.x < p2.x);
}
bool ral(point p1,point p2,point p3) //用向量积判断点的位置
{
_ _ return (p2.x - p1.x)*(p3.y - p1.y) > (p3.x - p1.x)*(p2.y - p1.y);
}
int main()
{
_ _ int n,i;
_ _ while(scanf("%d",&n) != EOF) //一共有n个点
_ _ {
_ _ _ _ for(i = 0; i < n; i++)
_ _ _ _ _ _ scanf("%d%d",&p[i].x,&p[i].y);
__ _ _ if(n == 1)
_ _ _ _ {
_ _ _ _ _ _ printf("%d %d\n",p.x,p.y);
_ _ _ _ _ _ continue;
_ _ _ _ }
_ _ _ _ if(n == 2)
_ _ _ _ {
_ _ _ _ _ _ printf("%d %d\n",p.x,p.y);
_ _ _ _ _ _ printf("%d %d\n",p.x,p.y);
_ _ _ _ _ _ continue;
_ _ _ _ }
_ _ _ _ sort(p,p + n,cmp);
_ _ _ _ res = p;
_ _ _ _ res = p;
_ _ _ _ int top = 1;
_ _ _ _ for(i = 2; i < n; i++)
_ _ _ _ {
_ _ _ _ _ _ while(top && !ral(res[top],res[top - 1],p[i]))
_ _ _ _ _ _ top--;
_ _ _ _ _ _ res[++top] = p[i];
_ _ _ _ }
_ _ _ _ int len = top;
_ _ _ _ res[++top] = p[n - 2];
_ _ _ _ for(i = n - 3; i >= 0; i--)
_ _ _ _ {
_ _ _ _ _ _ while(top != len && !ral(res[top],res[top - 1],p[i]))
_ _ _ _ _ _ top--;
_ _ _ _ _ _ res[++top] = p[i];
_ _ _ _ }
_ _ _ _ for(i = 0; i < top; i++)
_ _ _ _ _ _ printf("%d %d\n",res[i].x,res[i].y);//输出凸包上的点
_ _ }
_ _ 回车键 0;
}
代码二
#特库摩lude // 求点集合的凸包的gram算法。n是顶点个数,x,y是顶点
坐标。
#include // order 是按照顶点和左下脚的角度的排序后数组。
#include // tu即是逆时针的凸包上的顶点。
#include //
using namespace std; //使用条件:1。点可以任意给,可重复。
// 2。三个以及以上的点。
ifstream fin("input.txt"); // 3。已经考虑了边上有点的情况。
#define NN 1000
#define pi 3.1415827
typedef struct Cseg{
double x,y,tg;
}Cseg;
int n;
double x[NN],y[NN];
deque order;
deque tu;
Cseg seg1;
deque ::iterator p1;
deque ::iterator p,q;
void in();
void gram();
void makeorder(int s);
double dist(double x1,double yy1,double x2,double yy2);
double cross(double x1,double yy1,double x2,double yy2);
void out();
int main()
{
in();
gram();
李光洙();
回车键 0;
}
void out()
{
int i;
for (i=0;i
cout< <<" "< <
}
cout< <<" Edges Polydgon"<
return;
}
void in()
{
int i;
fin>>n;
for (i=0;i
fin>>x>>y;
return;
}
void gram()
{
int i,mm;
mm=0;
for (i=1;i
if (y[mm]>y+1e-9) mm=i;
else if (fabs(y[mm]-y)<1e-9 && x[mm]>x+1e-9) mm=i;
makeorder(mm);
seg1.x=x[mm];
seg1.y=y[mm];
tu.push_back(0);
tu.push_back⑴;
tu.push_back⑵;
for (i=3;i
p=tu.end();
seg1.x=order.x;
seg1.y=order.y;
p--;
q=p-1;
if
(cross(order[*p].x-order[*q].x,order[*p].y-order[*q].y,order.x-order[*
q].x,order.y-order[*q].y)>1e-9)
tu.push_back(i);
else{
tu.pop_back();
i--;
continue;
//tu.push_back(i);
}
}//for
回车键;
}
void makeorder(int s)
{
int i;
double tg;
order.clear();
for (i=0;i
if (i==s) continue;
tg=atan2(y-y[s],x-x[s]);
seg1.x=x;
seg1.y=y;
seg1.tg=tg;
p1=order.Begin();
while (p1!=order.end()){
if (fabs(tg-p1->tg)<1e-9){
if
(dist(x[s],y[s],x,y)>dist(x[s],y[s],p1->x,p1->y)+1e-9) {
p1->x=x;
p1->y=y;
}
break;
}
else
if (tg tg){
order.insert(p1,seg1);
break;
}
p1++;
}//while
if (p1==order.end()) order.insert(p1,seg1);
}//for
seg1.x=x[s];seg1.y=y[s];
order.insert(order.begin(),seg1);
//for (i=0;i
// printf("i=%d %lf %lf
%lf\n",i,order.x,order.y,order.tg*180/pi);
回车键;
}
double cross(double x1,double yy1,double x2,double yy2)
{
return (x1*yy2-x2*yy1);
}
double dist(double x1,double yy1,double x2,double yy2)
{
return pow((x1-x2)*(x1-x2)+(yy1-yy2)*(yy1-yy2),0.5);
}
代码三
P标程{北京大学 1113 }
{$Q-,S-,R-}
const
pi=3.1415926575;
zero=1e-6;
maxn=1000;
maxnum=100000000;
var
ans,temp :X波段;
n,TOT :longint;
x,y :array[0..maxn]of extended;
zz,num :array[0..maxn]of longint;
procedure swap(var ii,jj:extended);
var
t :extended;
begin
t:=ii;ii:=jj;jj:=t;
end;
procedure init;
var
i,j :longint;
begin
readln(n,temp);
for i:=1 to n do readln(x[i],y[i]);
end;
函数 ok(x,midx,y,midy:X波段):longint;
begin
if 丙烯腈-丁二烯-苯乙烯共聚物(x-midx)<=zero then
begin
if abs(midy-y)<=zero then exit(0);
if midy>y then exit⑴
else exit⑵;
end
else
begin
if x
else exit⑵;
end;
end;
procedure qsort(head,tail:longint);
var
i,j :longint;
midx,midy :X波段;
begin
i:=head;
j:=tail;
midx:=x[(head+tail) div 2];
midy:=y[(head+tail) div 2];
repeat
while ok(x[i],midx,y[i],midy)=1 do inc(i);
while ok(x[j],midx,y[j],midy)=2 do dec(j);
if i<=j then
begin
swap(x[i],x[j]);
swap(y[i],y[j]);
inc(i);
韩国铁道9201系柴油动车组(j);
end;
until i>j;
if i
if j>head then qsort(head,j);
end;
函数 情节(x1,y1,x2,y2:X波段):extended;
begin
Plot:=x1*y2-x2*y1;
end;
function check(first,last,new:longint):boolean;
var
ax,ay,bx,by :extended;
Pt :extended;
begin
ax:=x[last]-x[first];ay:=y[last]-y[first];
bx:=x[new]-x[first];by:=y[new]-y[first];
if 情节(ax,ay,bx,by)<-zero then exit(true)
else exit(false);
end;
procedure Tbao;
var
i,j,tail :longint;
begin
TOT:=0;
zz:=1;tail:=1;
for i:=2 to n do
begin
while (zz[tail]<>1)and check(zz[符尾1],zz[tail],i) do dec(tail);
inc(tail);
zz[tail]:=i;
end;
inc(tot,tail-1);
for i:=1 to tail-1 do
num[i]:=zz[i];
zz:=n;tail:=1;
for i:=n-1 downto 1 do
begin
while (zz[tail]<>n)and check(zz[tail-1],zz[tail],i) do dec(tail);
inc(tail);
zz[tail]:=i;
end;
for i:=1 to 符尾1 do
num[tot+i]:=zz[i];
inc(tot,tail-1);
end;
begin
dist:=sqrt((x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
end;
procedure main;
var
i,j :longint;
begin
qsort(1,n);
Tbao;
ans:=0;
for i:=1 to TOT1 do
ans:=ans+dist(num[i],num[i+1]);
ans:=ans+dist(num[TOT],num);
ans:=ans+temp*pi*2;
writeln(ans:0:0);
end;
begin
init;
main;
end.